Structure-Activity Relationships in Catalyst Design

English version below

Pincer-komplekser udgør under tiden en af de hurtigst voksende delmængder af, hvad der normalt betragtes som organometalforbindelser. Denne type forbindelser har igennem de seneste 15-20 år udvist stort potentiale i grundforskningen såvel som i industrien. Dette skyldes hovedsageligt, at pincer-ligandens geometri og elektroniske struktur er særdeles fleksible. Disse egenskaber er med til at gøre pincer-komplekser ideelle i udviklingen af, især, nye katalysatorer men også nye molekyler i bemærkelsesværdige oxidationstrin, spintilstande og geometrier. Gennemgribende karakterisering af disse forbindelser, så vel som alle andre forbindelser, er særdeles nødvendig i evalueringen af struktur-reaktivitetsforhold samt design af molekyler med særlige egenskaber. En serie af nye carbonylhydridoruthenium pincer-komplekser er blevet spektroskopisk og strukturelt evalueret. Dette er med henblik på at finde en kobling mellem de spektroskopiske og geometriske karakteristika for Ru-H bindingen, hvilken vides at være af yderste vigtighed i visse katalytiske processor så som (de)hydrogenerings-, transferhydrogenerings-, aminerings- og alkyleringsreaktioner. Endvidere er reaktivitetsmønstrene for en række nitrosylforbindelser blevet undersøgt, med henblik på udviklingen af pincerkomplekser med interessante katalytiske egenskaber og bindingsforhold.

English version

Pincer complexes are currently one of the fastest growing subgroups of what are normally considered organometallic compounds. These types of compounds have shown great potential in basic research as well as in industry over the past 15-20 years. This is mainly due to the highly flexible geometry and electronic structure of the pincer ligand. These properties make pincer complexes ideal for the development of, especially, new catalysts but also new molecules in notable oxidation states, spin states, and geometries. Thorough characterization of these compounds, as well as all other compounds, is extremely necessary in evaluating structure-reactivity relationships and designing molecules with special properties. A series of new carbonylhydride ruthenium pincer complexes has been spectroscopically and structurally evaluated in order to find a link between the spectroscopic and geometric characteristics of the Ru-H bond, which is known to be of utmost importance in certain catalytic processes such as (de)hydrogenation, transfer hydrogenation, amination, and alkylation reactions. Furthermore, the reactivity patterns of a number of nitrosyl compounds have been investigated with the aim of developing pincer complexes with interesting catalytic properties and bonding.

Supervisors

Associate Professor Martin Nielsen

Co-supervisor

Associate Professor Susanne Mossin